Optimal approximate
conversion of spline curves
and spline approximation of

offset curves

J Hoschek and N Wissel*

The paper introduces an effective method for approxi-
mate spline conversion. The method uses mainly
parameter transformations and nonlfinear optimization
techniques. Geometric continuity conditions are used as
parameter invariant spline conditions. For geometric
continuity of order 1, 2, 3, 4, algorithms are introduced
for approximative reducing of the polynomial degree
of a given spline segment (and splitting into as few spline
segments as possible } or elevating the polynomial degree
(and merging as many spline segments as possible). The
method is extended to spline approximation of offset
curves {(and splitting into as few new spline segements
as possible).

computer-aided geometric design, curves, algorithms, optimization,
parametrization, geometric continuity, approximation

Most computer-aided design systems for free-form
curves and surfaces modelling use parametric polynomial
representation with different polynomial bases and
maximum polynomial degrees. Therefore there is a need
for communication, and the exchange of data between
different systems, using an effective method for approxi-
mate conversion of spline representation. Conversion
from one polynomial base to another can be achieved
by direct matrix multiplication whenever the number
and degrees of polynomial terms in both representations
are equal. In this case any loss of accuracy stems from
numerical noise. If two systems do not allow for the
same maximum polynomial degrees, then approximate
conversions of high order functions into low order
functions (reducing combined with splitting spline
segments) and perhaps vice versa (elevating and
merging spline segments) are inevitable. This causes
approximation errors, which must be minimized.
Dannenberg and Nowacki’ first intreduced an approach
that uses an error estimate due to de Boor® and an
application of this estimate due to Holzle’, while
Hoschek® has proposed a conversion method using
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geometric continuity of order 1 and order 2 and
parameter optimization. In this paper this method is
extended to geometric continuity of order 3 and 4
(i.e. reduction to polynomial degree 3, 5 7, and 9).
Furthermore, a more effective nonlinear optimization
algorithm and a spline-splitting algorithm are introduced,
which leads to a small number of spline segments for
degree reducing. While Hoschek® used the cyclic
coordinate ascent as the optimization algorithm, which
is simple to use but leads only to local minima®, now
optimization algorithms are used that evaluate the
global minimum with help of approximation of the
gradients of the objective function. Thus difficult
situations with an extrermne variation of curvature (see
Figure 2) or with loops (see Figure 3} can also be
approximated. Furthermore, the procedure is used for
merging more than one spline segment to one segment
and for spline approximation of offset curves. The
approximation process can be extended to approximate
spline conversion of surfaces.

GEOMETRIC CONTINUITY CONDITIONS

The key idea of the proposed method is to use the
parametrization as a design parameter: the shape of
an approximation curve of a set of points will be
changed if the parameter values of the points are
changed during the approximation process. If it is
required to change parametrization during the design
process, spline conditions must be used that are
invariant to the parametrization. Osculating conditions
can be used that are well known in differential
geometry® as contact of order k of two curves or
surfaces. In computer-aided geometric design these
conditions are denoted as geometric continuity of
order k (GC* continuity).

Two curves X and Y have GC* continuity if the
following conditions hold at a common point of X and Y

k=1
X' =rY

k=2:
X" = r?Y" 4 r,Y' (conditions for k= 1)
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k=3:
X" =r?Y"+ 3r.r,Y" + r,Y' (conditions for k=1,2)

k=4
XV =rYY+6r2r, Y+ 3r2 + 4r, 0 )Y + 1, Y!

{conditions for k=1,2, 3) (n

with arbitrarily chosen parameters r,. These conditions
can be developed by using an osculating algebraic
curve of degree k or out of the first k terms of the
Taylor expansion. The geometric continuity conditions
are also used by Barsky to develop Beta-splines®, Barsky
and de Rose deduced the conditions (1} with help of
the chain rule®, The geometric splines introduced by
Boehm™ or Hagen™ use special cases of condition (1)
as continuity conditions, Nielson™ first used generalization
of continuity conditions defined as differentiability.

A geometric interpretation of the geometric continuity
can be given as follows. If two curves have geometric
continuity of order two at a common point, they have
the same curvature at the common point; if two curves
have geometric continuity of order 3 at a common
point, they have the same torsion at the common point
for space curves or a common cubic osculating
parabola for plane curves.

For the algorithms developed here, Bézier techniques
will be used. Other methods, such as B-spline techniques,
follow easily by base transformations. The results can
be interpreted as a Bézier representation of Beta-splines.

The given curve (spline segment) X may have the
parametric representation

X=Y VB  telo,1) @)

i=0

with Bernstein polynomials B/ (¢} of degree n and V. as
given Bezier points. The required curve Y may be a
Bézier curve of degree m{m < n) and may have the
parametric representation

Y = i W.B"(1)

i=0

Tel0, 1] (3)

with unknown Bézier points W,. m is bound by
m>2k+1, with k as the order of the continuity
conditions. To transform the conditions {1} by (2)
into boundary conditions for the points X(0) = Y(0),
X{1) = Y(1}, the following abbreviations are introduced

min—1}
nim—1;

w, =

min—1)n—2)
 nfm—"1{m—=2)

_ m*n—"1)n—2}{n—73)
T m— Dim— 2)(m —3)

After some calculations the following conditions are
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obtained for the unknown Bézier points W,

k=1
W, =V,
W, =V, +(V,—V)i, (5)
W, =V,
Wm 1 Vn+(vnfi _vn).tu‘l
k=2:
w, :VU+(V2—V1)/1$CO1
+ (V1 - Vu)iz (6)
W, _,=V +(V, ,—V, e, {with (5)}
+IV,_, —V.u,

(for corresponding relations for k=3, k=4 see
Appendix 1).

APPROXIMATION ERROR FOR DEGREE
REDUCING

The goal is to approximate the given Bézier curve X by
a Bézier curve Y optimally, where optimally means
minimizing the square error sum. The position error will
be measured at s + 1 points P, of the given Bézier curve
X of degree n{s>n, for example s=2n) with the
(equidistant) parameter values ¢

5

If these parameter values are inserted into the required
Bézier curve Y, then the following are obtained as error
vectors

LS it=ad ()

0,=P—YIt) (8)

and as square error sum
5
= Z 82 (9)
i=0a

Fer the different continuity conditions, the error vectors
are determined by (with conditions (4)-(6))

k=1and m=3:

5 —R _( }/l B ( ) (vng-‘ _vn)lu'iBg(tf)

(10}
with

R,=P,— V,(Bi(t,)+ Bit)) — V, (B} + Bi(t,)
k=2 and m=5:
d, =R, —(V,— V,)(4,B;(t) + A,B3(t)
—(V, — V) ATew,Bj(t,)
(Vn 1 ,-,)(‘uiBs( )+ ung(ti))
—(V,_, =V, Jgio,Bit) (1)
V,(Biit) + B3(t) + B3(t)
—V,(B3(t,) + Bi(t) + B(t)
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(for corresponding relations for k=3, k=4, see
Appendix 2).

In equations (10) and (11) only the case m = 2k + 1
is considered. f m > 2k + 1 the undetermined inner
Bézier points W, are additional unknown variables.

OPTIMIZATION ALGORITHM

As only the case m=2k+1 will be considered,
therefcre there are 2k unknowns 4,,..., 4, pq, ..., 4
with 4, i, > 0, hence the permissible domain is out of
#*. During the optimization process, the square error
sum & in equation (9) has to be minimized. The received
square error sum depends on parametrization, hence
in general the error vectors 4, are not orthogonal to
the approximation curve Y. To obtain error vectors §,
approximately normal to the approximation curve Y(t),
a parameter correction is used as proposed by Hoschek®.
During this parameter correction, the perpendiculars
from the given points P; to the approximation curve
Y (t) are approximated by a set of parameter correction.

A numerical optimization algorithm will be used that
approximates the gradients of the objective function
and leads to a global minimum (see Jakob™ and the
procedures Globex and Extrem). It is obvious that any
other global-working numerical optimization algorithm
can be used.

The optimization works in the following steps.

¢ (0} Choose number s of points P, e.g. s =2n,
error &,, limit £,
degree m of approximation curve,

continuity condition k with m =2k + 1.

® (1) Compute P, =XI(t,) at t,=é, i=0(1)s;
Set index /=1.
® (2) Compute 4,,..., 4, py, ..., iy (4, ;> 0) with
help of a global nonlinear numerical approximating
algorithm;
From (1} and (3) follows the approximation curve
Y(t).
® (3) For i=0(1)s
Find an improved parametrization t.* of P,
using Hoschek?®;
Find deviation &, = max|P, — Y{t))|;
Sett,=t*
® (4) Set f=/+1.
@ (5) If &, <&, then Stop;
else if j <L then goto 2;
else split the given curve into two
segments and goto 1 (and follow the
algorithm for both segments).

SPLITTING ALGORITHM

The degree reduction is finished if the maximum error
is &, = max|d,| < g, with &, as given error tolerance.
iel
if & >¢g, the given curve must be split in more
segments. For splitting use the following strategy. A
curve of polynomial degree p can have at most 2p — 4
inflection points, including imaginary ones. To obtain
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generic spline curves, suppose that a cubic curve has
no more than one inflection point, a quintic curve has
no moere than three inflection points, or a spline curve
of degree p has no more than p — 2 inflection points.
If a given curve X(t) of degree n is approximated by a
curve Y(t} of degree m, therefore in a first step the
given curve is split in segments with at most m —2
inflection points. Then each of these segments will be
approximated by one curve Y(t} of degree m. If the
given curve X(t} has less than m — 2 inflection points
in the first step no splitting will be carried out. If the
error &, of one of these segments exceeds the given
error tolerance &, this segment will be split again at
the parameter value t=1/2. For splitting the spline
segments the de Casteljau algorithm is used, and the
new spline segments are transposed with geometric
continuity of order k.

EXAMPLES

The examples use the following scheme. the given curve
and the approximation curve are plotted one above
the other, the given curve and the corresponding Bézier
polygon (Bézier points marked by triangles) are drawn
by broken lines, and the approximation curve and the
corresponding Bézier polygon (Bézier paints marked by
boxes) are drawn by full lines. The boundary points of
the spline segments are marked by boxes with crosses.
Figure T contains a curve of degree 19 and its
approximation of degree 9 and geometric continuity
k=4 (g, =00067). The approximation of the whole
curve with only one Bézier curve of degree 7 and
geometric continuity k = 3 would lead to &, = 0.035; if
& = 0.008 and k = 3 were chosen for the approximation,
two segments would be necessary. If the same curve
is approximated by Bézier spline curves of degree 5 and
geometric continuity k = 2 and a given error tolerance
&£=0.002, three segments are needed. To give an
impression of the goodness of fit of the approximation
curve out of Figure 1, Figure 2 represents the curvature
K of the given curve and the approximation curve.
It can be seen that the curvature of the given curve
does not differ too much from the curvature of the
approximation curve, Figure 3 contains an approximation
of a given Bézier curve of degree 30 and geometric
continuity k = 4 (degree of approximation curve 9} by
seven segments (g, =0.097). The regions with an
extreme variation of the curvature are approximated
by small spline segments. A further example is shown
in Figure 4: the given Bézier curve of degree 19 has a
loop and is approximated by two Bézier segments of
degree 9 and geometric continuity k = 4 (g, = 0.0044).
Figure 5 demonstrates that even for fast-changing
curvature the approximating curve has nearly the same
curvature as the given curve.

MERGING OF SPLINE SEGMENTS AND
DEGREE ELEVATING

The introduced metheds can also be used for
® {(a) merging spline segments, where the given spline

segments and the merged spline segment have the
same degree (m =n)
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Figure 1. Bézier curve of degree 19 approximated by one Bézier curve of degree 9 and geometric continuity of order 4

(— = given quantities, ——— = approximations)

o (b) merging spline segments directly combined with
degree elevation or degree reduction where the
given spline segments have degree n and the new
spline segment has degree m with m#n

It is important to tell the difference between the two
approximation processes (a) and (b) with following
precise degree elevation. In approximation process (b)
for degree elevation the higher continuity conditions
at the boundary points lead to another (better) result
than process (a) and following precise degree elevation.

All conditions developed in conditions (5)-(6) and
the section ‘Approximation error for degree reducing’
can be used in the same way. Figure 6 contains an
example of merging combined with degree elevation:
four Bezier spline curves of degree 3 are merged to one
Bezier curve of degree 5 and continuity condition with
k = 2. As error value is obtained ¢, = 0.0016.

SPLINE APPROXIMATION OF OFFSET
CURVES

Now the results are transferred to spline approximation
of offset curves. Suppose that the given curve is a Bézier
curve of degree nn and has the parametric representation
X =X(t), then the corresponding offset curve X, at
(oriented) distance d along the unit normal vector n(t)
is given by

XA =X({t) +nit)d (12)
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For plane curves the normal vector n has the
representation
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Figure 2. Curvature k of given (———) and approximating
( ) curves shown in Figure 1
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Figure 3. Closed Bézier curve of degree 30 and approximating Bézier spline segments of degree 9 (k = 4) (~—— = given
quantities, — = approximations)
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Figure 4. Bézier curve of degree 19 with one Joop and approximation by two Bézier segments of degree 9 and
geometric continuity k = 4 (-—— = given quantities, — = approximations)
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Figure 5. Curvature k of given (———) and approximating
( ) curves shown in Figure 4

The normal vector (13) specifies a unique side of X on
which the offset d is performed, and the opposite side
can be determined by adopting a negative offset
magnitude d.

To obtain the boundary conditions for GC* approxi-
mation insert X, out of condition (12) in condition (1)
instead of X. After corresponding evaluations, conditions
are obtained analogously to condition (7). The new
conditions can be transformed out of condition (7) if
the following are exchanged (for k=1, k=2, k=3)

1
ary by Q1 = w1m(3t Xd(O))
M, = ! {at X (1))
T T ke
1
w, by Q, = wzm(at X400}
M, = ! (at X (1)
2T O ke

additionally, the factors of A;> resp. u.® must be
completed by addends

k'(0)d .
*(n— 211+ x(0)d)

k' (1)d
Hn—=201 4+ x(1)d)

esp. M

with k(i} (i =0, 1} as curvature in the boundary points
and k'(i) as the derivatives of k(i). Otherwise all
algorithms can be used as described in conditions (5)—(6)
and in the section ‘Approximation error for degree
reducing’.

Figure 7 shows the Bézier spline approximation of a
given Bézier curve of degree 5 (the middle curve} and
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the approximation of two offset curves of degree 5 and
geometric continuity of order k = 2. The lower curve
contains two segments (g, = 0.0094), while the upper
curve (with cusps) contains seven segments (¢, = 0.0070).
If k=" the upper curve can be approximated by four
segments {&, = 0.0027), and if k =3 four segments are
obtained with &, = 0.0082. The curve with the cusps
can be approximated by 10 spline segments of degree 3
(k="1). In some applications it is necessary to cancel
the part of the offset curve with the cusps. Then
algorithms can be used as described by Hoschek®.

APPENDIX 1

Conditions for the unknown Bézier points W, for k = 3,

W, =V, +(V,— V) ilw, (14)

m —

—1
+Mw(3—6m )
m—2

m—1
+ 3i1lzw,——]
m—2

m—1
+(V, —VJI:A%( —2m, + 3w$—7)

+(V,— V)2, {with conditions (5)

and (6)
Wm73 = vn + (vn—S _Vn72).|u$w2

+(V,,_2—Vn,1)

; m—1
il — 2w, 4+ 3wi——
m—2

y m—1
+pim|l 3—6
m—2

m-—1
+3#1#zw1m

W, =V, +(V,—V,}ljw, (15}
+ (V= V) Ala, + Aa, + 472, }
FV,—V,)

{A1b.gn + A3bagy + A2bye + A2bgye
+ 434,650+ A1 dsbig + A1 A3 b }

+(V, — V4, (with conditions (5)

(6), and (14))
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Figure 6.Four Bézier spline curves of degree 3 are merged to one Beézier curve of degree 5 (k = 2). Bézier polygons
of given curves and approximation curve are marked.

wn‘J—4=vn+(Vn—4_vn—3).u':‘lw3 _ m—1

Ay = 6*~~v3 w,w, — 3m,
+ (Vn—3 - Vn—z}
m—1
{ﬂ:aw+#‘3|a3o+ﬂ$ﬂzaz1} Ay = 4_12;: W,
+(Vn—2—'vn—1) m—1
4 3 2 2 an=6 3 @2
{#1bao + b3 + 11Dy + U3bae m -
— 132
+ﬂ$ﬂzbz1o+#1ﬂ2b110+ﬂ1.u3b101} bm=3a)3—16m 1w1w2+—|5 (m—1) w_at
m— (m—2)}m—3)
+ (Vn71 - vn)nu'd
—1 —
Bao =12 —w? 4 24 w, — 8,
The quantities 4, p, are arbitrarily chosen new parameters m—2 -
(which are abbreviations for the coefficients generated s
during calculation} and the coefficients a,;, by, are — 36 (m—"1) W’
determined by (m—2)m—3) "
10,0 7
7.5
5.0
Y
25 7
0.0 1
~2.5 T T T | | | 1 T T |
-2.5 0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0 22.5
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Figure 7. Bézier curve of degree 5 (middle curve) and approximation of two offset curves by Bézier spline segments
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-1 -1
bm=w1(6+12m —24
m—3 m—2
_ (m—1) o
T m=2m—3)
{m—1)?
by=18———"""_?
no (m—2m—3) '
m—1
—121 ",
m-—3
m—1 —1
bre=120—— @, =122~ @,
m—2 m—
a2
12 {m 1} 1
{(m—2)m—23)
m-—"1
by =4——a,
m—3
APPENDIX 2

Error vectors for continuity conditions with k = 3, k = 4:

k=3and m=7:

5,- = R,- - (V-| - VU)(AqB?;(t,) + lzB;(t,) + l_}BE(I,))

—(V,—V,) ( A0,Bll)
1
+(A$(3w$m———2a)2)
m-2
+i1m1(3—6m_1)
m—2
m—
+3/1 Ay, ——— )B’( ))
m—2

—(V,—V,) B,

- (Vn—1 - Vn)(“1BZ(tr) + .MZB:; tl

_{Vn—z—vn1)(ﬂ%w13§(ti)
m—"1
+(,u$(3w$——2w2>
m-—2
m—1
+,u$w1(3—6—)
m—2
1 7
+3u1uzw1 — | Bilt)

— Vs =V, L lpiw,Bilt)
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{m—2{m-—3)

=P, — V,(Bj(t;) + B(t;) + B}(t;) + BL(t)

— V,(Bj(t,) + BI(t;) + BL(t,) + BZ(t,})

k=4and m=29:

5,' = R; - (V1 - VO)(A-‘]Bg([,) + lng(I,) + A_;Bg(t,)

+ A,B3t) —(V,— V1)(l$w1B§(t,-)

(A3(3w,m—_;~2wz)

m—1 m—1
+A$w1(3—6m) +3/l1/12w,m_2)

BY(t) + (Abagy + A3byo + A2byo + A3bgy,  (17)
+ A%lzbzw + /11'12’3110 + l1lab1o1)33(ti))
+ (Alay, + Aday + A34,a,,)B3(L)
— (V= V3) 2@B3(t) — (V,_; — V, ), Bi(t)
+ 1,B3(t) + s Ba(t) + u,Bi(t))

- (Vn—Z_vn—1)(}u%w1Bg(ti)
3 ,m—1
+ | pil 3wi—— — 2w,
m—2
m—
+uﬁw1(3 - 6—)
m—2

+ 3p 0, _z)agu))

+ ({3bag + 13b e + 12Dy + Hibgs

+ @it by + 1 Habge + 1 s bigy)BIL)
—(V, ;—V, Nuio,Bt)

+ (piag + fias, + pi l,a,)BiL)

—(V,_y— Vo) io4Bi(t)

— V,(B2(t) + Bg(t) + B3(t) + B{(t) + Bs(t,))
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